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ABSTRACT
Our construction of the Wiener measure on C = C[0,∞) consists in first defining
a set function φ on the class of all compact sets based on certain n-dimensional
normal distributions, n = 1, 2, . . . using the structural relation at (2) below. This
structural relation, discovered by the first author, is recorded in his book (2013) on
page 130. We then define a measure µ on the Borel σ-field of subsets of C which is
the Wiener measure. This is done via a similar construction of the Wiener measure
on Ca = C[0, a) where a > 0 is an arbitrary real number.
The traditional way is to first construct the Brownian Motion process (BMP) and
then, by proving it is a measurable mapping into (C, C∞), call the measure induced
by the BMP on C the Wiener measure. In the present paper, we define the Wiener
measure directly.
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1. Introduction

Construction of the Wiener process is discussed by many authors and the discussion
invariably starts with the construction first of the Brownian Motion Process (BMP)
on a probability space. The BMP is studied for its properties and then is proved to
be a measurable mapping into C[0, 1] space endowed with the uniform metric and
the resulting Borel σ-field C1. Call the measure induced by the BMP on C[0, 1] the
Wiener measure. We refer to chapter 2 in [1].
The aim of the present paper is to reverse the procedure and construct the Wiener
measure directly using elementary measure theory and the structural relation given
at (2) below. In Pakshirajan, R. P. and Sreehari, M. An elementary construction of
the Wiener measure, arXiv:2011.05584v1 [math.PR] 11 November 2020, the authors
presented the construction of the Wiener measure on C[0, 1].
Let a > 0 be arbitrary but fixed. Let Ca = C[0, a] denote the space of real valued
continuous functions defined on [0, a], all vanishing at 0 and endowed with the norm
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∥x∥a = sup
0≤t≤a

|x(t)|, x ∈ Ca. Let ρa(x, y) denote the associated metric. Define another

norm : ∥x∥∗a = sup
0≤s, t≤a

|x(t)−x(s)|. The associated metric will be denoted by ρ∗a. Since

∥x∥a ≤ ∥x∥∗a ≤ 2∥x∥a, the two norms induce the same topology in Ca and determine
the same Borel σ-field.

Let Tn = {ak2n , k = 0, 1, 2, . . . , 2n};T =
∞⋃
n=1

Tn and note that T is a countable dense

subset of the interval [0, a]. For x ∈ Ca, define

℘nx =
(
x(

a

2n
), x(

2a

2n
)− x(

a

2n
), . . . , x(

a2n

2n
)− x(

a(2n − 1)

2n
)
)
. (1)

This maps Ca into R2n

. Assume R2n

is endowed with the usual metric and denote
the resulting Borel σ-field by R2n

. We note ℘n is a continuous map and hence is
Ca measurable. We prescribe the distribution of the vector variable ℘n to be the
multivariate normal distribution with independent components, each component with
zero mean and variance a

2n . i.e., it is the joint distribution of (
√

a
2n ξk, 1 ≤ k ≤ 2n)

where the ξks are independent standard normal variables.
Denote by νn the measure on R2n

by this distribution.
Let αn denote the measure generated on the sub σ-field ℘−1

n (R2n

) by the mapping ℘n.
All sets considered below are members of Ca.
Let K ⊂ Ca be compact. Then the following structural relation holds: (ref. pp 130-131
in [2].)

K = ∩∞
n=1℘

−1
n ℘nK. (2)

To make for seamless reading we present here a proof of (2).
That K ⊂ ∩∞

n=1℘
−1
n ℘nK is obvious. Now to establish the reverse inclusion, let x be

an arbitrary member of the right side. Hence for every n, x ∈ ℘−1
n ℘nK. There exists

therefore yn ∈ K such that ℘nx = ℘nyn. Since K is compact, sequence (yn) contains
a convergent subsequence, say, (ym) converging to, say, y0 ∈ K in the metric ρa. This
implies ym(t) → y0(t) for all t ∈ [0, a]. Fix r and let 1 ≤ j ≤ 2r. Letm > r. The relation
℘mx = ℘mym, is equivalent to the relation ℘mx = ℘mym in the sense that given
℘mx ∈ R2m

the point ℘mx is uniquely determined and conversely through a linear

transformation. Here ℘mx =
(
x( a

2m ), x( 2a
2m ), ..., x(a2

m

2m )
)
. We get x(aj2r ) = ym(

aj
2r ).

Take limit as m → ∞, and get x(aj2r ) = y0(
aj
2r ). Thus for every u ∈ T, x(u) = y0(u).

Since T is dense in [0, a] and since x, y0 are continuous functions, it follows that
x(t) = y(t) for all t ∈ [0, a]. Thus x ∈ K and the proof is complete.
Note that this inclusion is true for any set K and not only for compact sets.

Theorem 1.1. For any A ∈ Ca, αn(℘
−1
n ℘n(A)), n = 1, 2, . . . . is a monotonic de-

creasing sequence of numbers.

Proof.
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‘

αn+1

(
℘−1
n+1℘n+1(A)

)
=

∫
℘n+1(A)

dνn+1 ≤
∫

℘n(A)×R

dνn dβn+1

≤
∫

℘n(A)

dνn ≤ αn(℘
−1
n ℘n(A))

where βn+1 is the distribution function of a normal variable and νn = αn℘
−1
n .

Define set function φ on the compact sets K of Ca :

φ(K) = lim
n→∞

αn
(
℘−1
n ℘n(K)

)
. (3)

Note

φ(K) ≤ 1; φ(∅) = 0. (4)

Theorem 1.2. Let K1, K2 be compact sets such that φ(K1 ∩K2) = 0. Then φ(K1 ∪
K2) = φ(K1) + φ(K2).

Proof.
℘n(K1 ∪K2) = ℘n(K1) ∪ ℘n(K2)
℘−1
n ℘n(K1 ∪K2) = ℘−1

n ℘n(K1) ∪ ℘−1
n ℘n(K2).

Hence

αn
(
℘−1
n ℘n(K1 ∪K2)

)
= αn

(
℘−1
n ℘n(K1)

)
+ αn

(
℘−1
n ℘n(K2)

)
−αn

(
℘−1
n ℘n(K1) ∩ ℘−1

n ℘n(K2)
)

since αn is a measure. Now, ℘−1
n ℘n(K1)∩℘−1

n ℘n(K2) = ℘−1
n ℘n(K1∩K2). SinceK1∩K2

is a compact set and since φ(K1 ∩K2) = 0, αn
(
℘−1
n ℘n(K1 ∩K2)) < ε for all n large.

Taking limits as n→ ∞ and then as ε→ 0 in the inequalites

αn
(
℘−1
n ℘n(K1)

)
+ αn

(
℘−1
n ℘n(K2)

)
− ε ≤ αn

(
℘−1
n ℘n(K1 ∪K2)

)
≤ αn

(
℘−1
n ℘n(K1)

)
+ αn

(
℘−1
n ℘n(K2)

)
we complete the proof of the claim.

Remark 1. We have the following observations from the earlier discussion:
a) φ is finitely additive on the collection of compact sets.
b) 0 ≤ φ(K) ≤ 1 for all compact sets K.
c) If K1,K2 are compact sets and K1 ⊂ K2 then from (3), φ(K1) ≤ φ(K2).

Definition 1.3. We call a set, in a topological space, a boundary set if it is a closed
set with a null interior. The boundary of a set A (i.e., A ∼ Int A ) will be denoted by
∂A.
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Here we denote the closure of a set A by A and interior of a set A by IntA. Further
complement of a set A is denoted by A′.
We note that the boundary of a set is a boundary set.

Theorem 1.4. If K1, K2 are compact subsets with K1 ⊂ K2, and φ(∂K1) = 0, then
φ(K2 ∩ K̄ ′

1) = φ(K2)− φ(K1).

Proof. K̄ ′
1∩K2 is a compact set. K1∩{K̄ ′

1∩K2} = ∂K1. Since φ(∂K1) = 0, Theorem
1.2 applies and we get φ(K2) = φ

(
K1 ∪ {K̄ ′

1 ∩K2}
)
= φ(K1) + φ

(
K̄ ′

1 ∩K2

)
, as was

to be proved.

We now discuss some limiting properties of φ(Kn).

Theorem 1.5. (i) Let Kn, n ≥ 1, be compact sets such that Kn decreases to K. Then
φ(Kn) decreases to φ(K).
(ii) Suppose K,Kn, n ≥ 1 are compact subsets, Kn increases to K and φ(∂Kn) = 0.
Then φ(Kn) increases to φ(K).
(iii) Let K, Km, m ≥ 1 be compact sets, Km increases to K and φ(Km) = 0. Then
φ(K) = 0.

Proof. (i) Since the sequence (φ(Kn)) is monotonic decreasing, it is enough to show
that, given ε > 0, there exists KN such that φ(KN ) < φ(K) + ε.
We note that K is compact. Hence given ε > 0, we can find r ≥ 1 such that

φ(K) > αℓ
(
℘−1
ℓ ℘ℓ(K)

)
− ε (5)

for all ℓ ≥ r. Since Kn decreases to K, for all ℓ ≥ 1 we have that
℘−1
ℓ ℘ℓ(Kn) decreases to ℘

−1
ℓ ℘ℓ(K).

For fixed ℓ we then have that, as n→ ∞, αℓ
(
℘−1
ℓ ℘ℓ(Kn)

)
decreases to αℓ

(
℘−1
ℓ ℘ℓ(K)

)
.

Take ℓ = r. We can find N = N(r) large such that αr
(
℘−1
r ℘r(KN )

)
< αr

(
℘−1
r ℘r(K)

)
+

ε. This, together with (5), yields

φ(K) + ε > αr
(
℘−1
r ℘r(KN )

)
− ε > φ(KN )− ε.

Since ε > 0 is arbitrary, the claim follows.
(ii) Define En = K ∩ K̄ ′

n and note by Theorem 1.4 that φ(En) = φ(K) − φ(Kn).
Now, the Ens are compact sets and En decreases to ∅. Hence by part (i) above,
φ(En) decreases to 0. i.e., φ(Kn) → φ(K), as was to be proved.
(iii) Claim immediate from part(ii) above.

2. THE WIENER MEASURE on Ca.

In this Section we introduce a new set function in terms of φ on the Borel σ-field Ca of
subsets of Ca and study its properties to show that it is indeed the Wiener measure.
For arbitrary measurable sets A ∈ Ca define

µ(A) = sup
K⊂A, K compact

φ(K). (6)
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At the outset we observe that for compact sets K, µ(K) = φ(K) and hence all the
properties noted in the previous Section for φ also hold for µ. Further the definition
implies (i) that if A ⊂ B,A,B ∈ Ca then µ(A) ≤ µ(B) and (ii) that there exists an
increasing sequence (Kn) of compact sets, Kn ⊂ A such that µ(A) = lim

n→∞
µ(Kn).

The sets Kn can be chosen to be monotonic increasing.

Remark 2. This does not mean that Kn increases to A. i.e.,
∞⋃
n=1

Kn can be a proper

subset of A. To see this, take v ∈ C, ∥v∥ = 1. Let Kn = {λv, 0 ≤ λ ≤ 1 − 1
n} and

A = {λv, 0 ≤ λ ≤ 1}. However, if Kn = {λv, 0 ≤ λ ≤ 1− 1
n} ∪ {v} then both Kn and

A are compact and Kn increases to A.

We next discuss further properties of µ that enable us to claim that µ is indeed a
probability measure.

Theorem 2.1. (i) If A ⊂ B, then µ(A) ≤ µ(B).
(ii)If A ∩B = ∅, then µ(A ∪B) = µ(A) + µ(B).

Proof. (i) Immediate from the definition of µ at (6)
(ii) Let E ⊂ A, F ⊂ B be compact sets such that for a given ε > 0 µ(E) > µ(A)− ε
and µ(F ) > µ(B)− ε. We have, from Theorem 1.2
µ(E) + µ(F ) = µ(E ∪ F ) ≤ µ(A ∪B) since ε is arbitrary.
Thus µ(A∪B) ≥ µ(A)+µ(B). It remains to be shown that µ(A∪B) ≤ µ(A)+µ(B).
Given ε > 0, we can find a compact set K, K ⊂ A ∪B such that
µ(A ∪ B)− ε < µ(K).
Case 1. The distance d(A, B) = q > 0.
Consider an arbitrary sequence (xn) in K ∩A. Since it is a sequence in K, it contains
a convergent subsequence, converging to, say, x0. This x0 has to be in K ∩ A or in
K ∩ B. Since the sequence lies in K ∩ A and since d(K ∩ A, K ∩ B) ≥ q > 0, we
conclude x0 ∈ K ∩A. Thus we see that every sequence in K ∩A contains a convergent
subsequence converging to a point in K ∩ A. This means K ∩ A is a compact set.
Similarly, K ∩ B is a compact set. Summarising, we conclude that every compact
subset of A ∪ B is the union of a compact subset E of A and a compact subset F of
B. We get µ(A ∪ B) − ε < µ(K) = µ(E ∪ F ) = µ(E) + µ(F ) ≤ µ(A) + µ(B). That
µ(A ∪B) ≤ µ(A) + µ(B) is now immediate.
Case 2. d(A, B) = 0.
This case assumption implies that Q = Ā ∩ B̄ ̸= ∅. Again in this case one or both
the sets K ∩ A, K ∩ B can fail to be compact. Since the other case admits to being
similarly argued, let us assume that neither of the two sets is compact. K ⊂ A∪B can
not be compact if any convergent sequence in it converges to a point outside K. i.e.,
if convergent sequences in K ∩ A or in K ∩ B converge to points outside these sets.
Thus K can be a compact subset only if E = K ∩ A and F = K ∩ B are compact.
And the arguments and the conclusion in case 1 hold.
With this the proof is complete.

Remark 3. Immediate consequences of Theorem 2.1 are :

a) If Ak, 1 ≤ k ≤ n is any collection of n events, then µ(
n⋃
k=1

Ak) ≤
n∑
k=1

µ(Ak) and if

5
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the events An are mutually exclusive equality holds.
(b) If A ⊂ B, then µ(B ∼ A) = µ(B)− µ(A).

Our next result shows that µ is monotone.

Theorem 2.2. (i) If An decreases to A, then µ(An) decreases to µ(A).
(ii)If An increases to A, then µ(An) increases to µ(A).

Proof.
(i) By Theorem 2.1 we note that the hypothesis implies Bn decreases to ∅ where
Bn = An ∩ A′. We refer to Remark 3(a) and claim that it is enough to show that
µ(Bn) → 0.
Find compact sets Kn ⊂ Bn such that µ(Bn) − µ(Kn) <

ε
2n . Define Qn = ∩nj=1Kj ,

Note that Qn ⊂ Bn, that Qn is a compact set and that Qn decreases to ∅, By Theorem
1.5 and the fact that µ(ϕ) = 0 by (4), it then follows that µ(Qn) → 0. Further by
Remark 3(a)

µ(Bn)− µ(Qn) = µ(Bn ∩Q′
n) = µ

(
Bn ∩ {

n⋃
j=1

K ′
j}
)
= µ

( n⋃
j=1

(Bn ∩K ′
j)
)

≤
n∑
j=1

µ(Bn ∩K ′
j) ≤

n∑
j=1

µ(Bj ∩K ′
j) ≤

n∑
j=1

{µ(Bj)− µ(Kj)} ≤
n∑
j=1

ε

2j
< ε

for all n. Here we used the Remark 3 and the fact that Bn is decreasing. Collecting
the results, we conclude µ(Bn) → 0, thus completing the proof of this part.
(ii) That µ(An) is increasing is true follows from Theorem 2.1(i). Since A ∩
A′
n decreases to ∅, part (i) applies and we have µ(An ∩ A′) → 0. Now by Remark

3(b), this gives µ(An) → µ(A).

Theorem 2.3. µ defined at (6) is a probability measure.

Proof.
Let An ∈ Ca, n ≥ 1 be a sequence of mutually exclusive events. Let A =

⋃∞
n=1An =⋃∞

n=1Bn where Bn =
⋃n
k=1Ak. Since Bn increases to A, Remark 3(a) applies and then

we have

µ(A) = lim
n→∞

µ(Bn) = lim
n→∞

n∑
k=1

µ(Ak) =

∞∑
k=1

µ(Ak).

i.e., µ on Ca is countably additive. Since µ(A) ≥ 0 for A ∈ C it follows that µ is a
probability measure if we show that µ(Ca) = 1.
Let T = ∪∞

n=1Tn, Tn = {tk, 1 ≤ k ≤ 2n} where tk = tk,n = ak
2n and note that T is

a countable dense subset of the interval [0, a]. Let Sm = {x : x ∈ Ca, ∥x∥ ≤ m}.
We note Sm = {x : x ∈ Ca, sup

t∈T
|x(t)| ≤ m} = ∩∞

n=1Bn,m = lim
n→∞

Bn,m where

Bn,m = {x : x ∈ Ca, sup
t∈Tn

|x(t)| ≤ m} = ∩t∈Tn
{x : x ∈ Ca, |x(t)| ≤ m}.

We note that Sm increases to Ca. Recall that, given ε > 0, we can find Am ⊂ Sm, Am
compact such that µ(Sm)− µ(Am) < ε. Write

℘Tn
x =

(
x(( a2n ), x(

2a
2n )− x( a2n ), x(

3a
2n )− x( 2a2n ), ..., x(

a2n

2n )− x(a(2
n−1)
2n )

)
.

6
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If K ⊂ Ca is a compact set, then arguing as in the proof of Theorem 1.1 we get that
℘−1
Tn
℘Tn

K decreases to K. Hence given ε > 0, we can find N such that for all n ≥ N ,

µ(Am) + ε > αTn
℘−1
Tn

(
℘Tn

Sm
)
= P

(
a1/2

2n/2 max
1≤j≤2n

|ξj | ≤ m
)

where the ξs are independent standard normal variables. Hence

µ(Am) + ε >
(
P (|ξ| ≤ 2n/2 m

a1/2 )
)2n

=
(
1− P (|ξ| > 2n/2 m

a1/2 )
)2n

≥
(
1− aE|ξ|2

m2 2n

)2n

leading to µ(Am) + ε ≥ e−(a/m2).
This implies by Theorem 2.2(ii),
µ(Ca) = lim

m→∞
µ(Sm) ≥ lim

m→∞
µ(Am) ≥ lim

m→∞
e−a/m

2 − ε ≥ 1− ε.

Since ε > 0 is arbitrary we get µ(Ca) = 1.

2.1. Alternate proof for µ(Ca) = 1 which will be useful in Section 3.

Since µ(K) ≤ 1 for all compact sets, as noted in (4) and since
µ(Ca) = sup

K⊂Ca, K compact
µ(K), it follows that µ(Ca) ≤ 1. So the proof will be complete

if we show that µ(Ca) ≥ 1. This we proceed to show.
Let

H0
α = {x : sup

0≤s,t≤1; s ̸=t

|x(t)− x(s)|
|t− s|α

<∞}

and

H0
α,a = {x : sup

0≤s,t≤a; s ̸=t

|x(t)− x(s)|
|t− s|α

<∞}.

Let δ > 0 be arbitrary. Then for |s− t| < δ and x ∈ H0
α without loss of generality we

have

|x(s)− x(t)| < |t− s|α < δα.

Then we have the following Theorem which in turn implies µ(Ca) = 1.

Theorem 2.4. For 0 < α < 1, µ(H0
α) = 1.

Proof.

Take n large so that a
2n < δ. Then |x(a(r + 1)

2n
)−x(ar

2n
)| ≤ ( a2n )α for r = 0, 1, . . . , n−1.

Since the µ measure of every compact subset of Ca ≤ 1 it follows that the µ measure
any measurable subset of Ca ≤ 1 as well. Now since

H0
α,a = {x : sup

0≤s,t≤a; s ̸=t

|x(t)− x(s)|
|t− s|α

<∞}

is a measurable subset of Ca it follows that µ(H0
α,a) ≤ 1.

Set

Sα,a(λ) = {x : sup
0<s,t≤a; 0<|s−t|<1

|x(t)− x(s)|
|s− t|α

≤ λ}.

7
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Then Sα,a(λ) is a compact subset of Ca (see Appendix) and µ((Sα,a(λ))′) < ε for all
large λ depending on ε. i.e., limn→∞ νn(℘n(Sα,a(λ))′)) < ε.
Let

An = {x : x ∈ H0
α,a; max

0≤r≤2n−1
|x(a(r + 1))− x(ar)| ≤ λaα

2nα
}.

Note that for x ∈ An

℘n(x) =

(
x(

a

2n
), x(

2a

2n
)− x(

a

2n
), . . . , x(

a2n

2n
)− x(

a(2n − 1)

2n
)

)
.

We then have

µ(Sα,a(λ)) = lim
n→∞

νn(℘n(Sα,a(λ))) ≥ lim
n→∞

νn(℘n(Sα,a(λ) ∩An))

≥ lim
n→∞

[νn(℘nAn)− νn(℘n(An ∩ (Sα,a(λ))′)]

≥ lim
n→∞

[νn(℘nAn)− νn(℘n((Sα,a(λ))′)]

≥ lim
n→∞

[νn(℘nAn)− ε]

≥ lim
n→∞

P ( max
0≤r≤2n−1

|x(a(r + 1))− x(ar)| ≤ λaα

2nα
)− ε

≥ lim
n→∞

P ( max
0≤r≤2n−1

|ξr| ≤
λ2n(1−2α)/2

a(1−2α)/2
)− ε

= lim
n→∞

[P (|ξ| ≤ λ2n(1−2α)/2

a(1−2α)/2
)]2

n − ε

= lim
n→∞

[1− P (|ξ| > λ2n(1−2α)/2

a(1−2α)/2
)]2

n − ε

≥ lim
n→∞

[1− a

2n
E|ξ|2/(1−2α)

λ2/(1−2α)
]2

n − ε

≥ e−ψ(λ) − ε

by Chebyshev’s inequality where ξ, ξk are independent standard normal rvs and

ψ(λ) = aE|ξ|2/(1−2α)

λ2/(1−2α) → 0 as λ → ∞. Since ε is arbitrary from the above result we

get µ(Sα,a(λ)) ≥ 1 and hence µ(H0
α) = 1. This completes the proof of Theorem 2.4.

Remark 4. (i) From the construction of µa, it is clear that if ν is a probability
measure on Ca and if its finite dimensional distributions (i.e., the distributions of
the vector variables (πt1 , πt2 , . . . , πtk), for every choice of k and every choice of
(t1, t2, . . . , tk) are the same as the corresponding ones of µa then ν ≡ µa. It follows
now that µ is the Wiener probability measure.
(ii) The co-ordinate process {πt, t ≥ 0} is known as the Brownian motion process.

8
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3. Constructing the Wiener measure on C∞.

LetC∞ be the space of all the real continuous functions defined on [0,∞), all vanishing
at 0 endowed with the metric

d(f, g) =

∞∑
n=1

1

2n
sup0≤t≤n |f(t)− g(t)|

1 + sup0≤t≤n |f(t)− g(t)|

Further on Cr define the metric

dr(f, g) =

r∑
n=1

1

2n
sup0≤t≤n |f(t)− g(t)|

1 + sup0≤t≤n |f(t)− g(t)|
.

Let C∞ denote the Borel σ-field of (C∞, d) for f, g ∈ C∞. Note that (C∞, d) is a
complete and separable space and the metrics d(f, g) and dr(f, g) are bounded by 1.
Define mapping Qr as Qrf(t) = f(t), 0 ≤ t ≤ r for r ≥ 1 and f ∈ C∞. We note
each Qr is C∞ \ Cr measurable. Let C∗

∞ denote the smallest σ-field in C∞ wrt which
Qr, r = 1, 2, . . . are measurable.

Theorem 3.1. (i) Fix f ∈ C∞. Then A = B where

A = ∪∞
r=1{g : g ∈ C∞. dr(f, g) > λ} and

B = {g : g ∈ C∞, d(f, g) > λ}
(7)

(ii) C∗
∞ = C∞.

Proof.
(i) Let g ∈ B. If it is not admitted that g ∈ A, then dr(f, g) ≤ λ for each r ≥ 1.
Since dr(f, g) increases to d(f, g), it follows that d(f, g) ≤ λ, a contradiction to the
assumption d(f, g) > λ.
If now g ∈ A, then for some r ≥ 1 (and hence for all large r) dr(f, g) > λ. Since
d(f, g) ≥ dr(f, g) > λ, it follows that g ∈ A.
(ii) That the Qrs are continuous maps is easy to verify. Hence we conclude C∗

∞ ⊂ C∞.
The reverse inclusion will stand proved if we show that every closed d-sphere S(f ; λ) =
{g : g ∈ C∞, d(f, g) ≤ λ} belongs to C∗

∞. Now, since dr(f, g) increases to d(f, g),
S(f ; λ) = {g : dr(f, g) ≤ λ for every r ≥ 1} = ∩∞

r=1{g : dr(f, g) ≤ λ}. Since
{Qrg : dr(f, g) ≤ λ} ∈ Cr, {g : dr(f, g) ≤ λ} ∈ C∗

∞. Hence S(f ; λ), being the
intersection of a countable number of such sets, belongs to C∗

∞.

Theorem 3.2. (i) If K ⊂ C∞ is compact, then

K = ∩∞
r=1Q

−1
r QrK. (8)

(ii) For any set A ⊂ C∞,

Q−1
r+1Qr+1A ⊂ Q−1

r QrA. (9)

Proof.
(i) That K is a subset of the rightside is trivial to see. To prove the converse, set
E = ∩∞

r=1Q
−1
r QrK. Then the following relations hold.

9



Asian European Journal of Probability and Statistics Pakshirajan and Sreehari

E ⊂ Q−1
r QrK for every r ≥ 1 ⇒ QrE ⊂ QrK for every r ≥ 1 ⇒ Q−1

r QrE ⊂
K for every r ≥ 1.
Since E is compact we have, as observed earlier, E ⊂ ∩rQ−1

r QrE and hence the re-
quired result follows.
(ii) Let f ∈ Q−1

r+1Qr+1A. Hence Qr+1f ∈ Qr+1A. There exists then g ∈ A such that

Qr+1f = Qr+1g. This implies Qrf = Qrg and so f ∈ Q−1
r QrA.

Theorem 3.3. µr(QrK), r = 1, 2, . . . is a monotonically decreasing sequence of real
numbers.

Proof.
Let Tr map Cr+1 on to Cr according to the following scheme. TrQr+1g = Qrg.
Thus TrQr+1 = Qr. Recall Wiener measure µr is defined on Cr, r = 1, 2, . . ..
Both µr+1T

−1
r and µr are measures defined on Cr. Their finite dimensional dis-

tributions are the same. Hence the two are identical (ref. Remark 4). We then
have (using the formula for change of variables in an integral (ref. Theorem 2.3.6,
p91,[2]), µr(QrK) =

∫
QrK

dµr =
∫

QrK

dµr+1T
−1
r =

∫
T−1
r QrK

dµr+1 ≥
∫

Qr+1K

dµr+1.

We see from this that µr(QrK) is a monotonically decreasing sequence of real numbers.

For K ∈ C∞, K compact, define

µ∞K = lim
r increases to ∞

µr(QrK) (10)

and for arbitrary A ∈ C∞, define

µ∞A = sup
K⊂A, K compact

µ∞K (11)

and proceed as in the construction of the measure µa, use (10) and arrive at a countably
additive finite measure µ∞ which is finite and ≤ 1, by(10) and (11).
That µ∞ is a probability measure will follow if we show that µ∞C∞ = 1.
Consider the Hölder space Hα,∞ and define, for x, y ∈ Hα,∞ the metric

dα,∞(x, y) =

∞∑
n=1

1

2n

sup0≤t,s≤n;0<|t−s|<1
|x(t)−y(t)−x(s)+y(s)|

|t−s|α

1 + sup0≤t,s≤n;0<|t−s|<1
|x(t)−y(t)−x(s)+y(s)|

|t−s|α

Also define

d∗α,∞(x, y) =

∞∑
n=1

1

2n

sup0≤t,s≤n;0<|t−s|<1
|x(t)−y(t)|

|t−s|α

1 + sup0≤t,s≤n;0<|t−s|<1
|x(t)−y(t)|

|t−s|α
.

Note that d∗α,∞(x, y) ≤ dα,∞(x, y) ≤ 2d∗α,∞(x, y). Further define on Hα,∞ another
metric

d(x, y) =

∞∑
n=1

1

2n
sup0≤t≤n |x(t)− y(t)|

1 + sup0≤t≤n |x(t)− y(t)|
.

Note that d(x, y) ≤ d∗α,∞(x, y) ≤ dα,∞(x, y) Denote by ϑ the null element.

10
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i.e., the function that is identically zero. Since S∗(λ) = {f : d(f, ϑ) ≤
λ} increases to C∞ as λ increases to ∞, it is sufficient to show that, given ε > 0, a λ
can be found such that µ∞

(
S∗(λ)

)
> 1− ε.

Define S∗α(λ) = {x : x ∈ Hα,∞, dα,∞(ϑ, x) ≤ λ}. Since d(x, y) ≤ dα,∞(x, y),
S∗α(λ) ⊂ S∗(λ). Hence it is enough to find a λ such that µ∞(S∗α(λ)) > 1 − ε. Since
S∗α(λ) is a compact set, µ∞(S∗α(λ)) = lim

r→∞
µr(QrS∗α(λ)) by(10). Take r = [λ]. The argu-

ments in the proof of Theorem 2.3 apply and we get µ∞(S∗α(λ)) ≥ e−r/λ
2 ≥ e−1/λ → 1

as λ→ ∞.
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4. Appendix: Compactness of Sα,a(λ).

Recall

Sα,a(λ) = {x : ∥x∥α = sup
0<s,t≤a; 0<|s−t|<1

|x(t)− x(s)|
|s− t|α

≤ λ}.

We shall show that Sα,a(λ) is a compact subset of Ca. To this end we shall show (a)
that it is bounded, (b) that it is closed and (c) that it is uniformly equicontinuous.
Let α < β. Then Sβ,a(λ) ⊂ Sα,a(λ).
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(b) Consider u ∈ H0
α, un ∈ Sβ,a(λ) and let ∥un − u∥α → 0 as n→ ∞.

sup
0<s,t≤a; 0<|s−t|<1

|u(t)− u(s)|
|s− t|β

≤

≤
(

sup
0<s,t≤a; 0<|s−t|<1

|u(t)− u(s)|
|s− t|α

)β/α(
sup

0<s,t≤a; 0<|s−t|<1
|u(t)− u(s)|

)1− β

α

= lim
n→∞

(
sup

0<s,t≤a; 0<|s−t|<1

|un(t)− un(s)|
|s− t|α

)β/α(
sup

0<s,t≤a; 0<|s−t|<1
|u(t)− u(s)|

)1− β

α

≤ lim sup
n→∞

(
sup

0<s,t≤a; 0<|s−t|<1

|un(t)− un(s)|
|s− t|β

)
×

lim sup
n→∞

sup
0<s,t≤a; 0<|s−t|<1

(
|un(t)− un(s)|

β

α
−1|u(t)− u(s)|1−

β

α

)
≤ lim sup

n→∞
∥un∥β ≤ λ.

This shows that u ∈ Sβ,a. i.e., Sβ,a(λ) is a closed subset of H0
α.

(c) Finally we prove that Sα,a is uniformly equicontinuous in H0
α. Let x ∈ Sα,a(λ) and

let δ > 0 be arbitrary. Consider , for α < β

sup
0≤s,t≤a; |t−s|≤δ

|x(t)− x(s)|
|t− s|α

= sup
0≤s,t≤a; |t−s|≤δ

|x(t)− x(s)|
|t− s|β

× |t− s|β−α ≤ λ δβ−α.

Since δ is arbitrary and since the above step holds for all x ∈ Sα,a uniform equiconti-
nuity follows.
We thus have compactness of Sα,a.
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